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Abstract 

A theoretical analysis for the computation of the 
coincidence site lattice (CSL) symmetry is presented. 
It is shown that three types of symmetry elements can 
exist and each one can be found by properly using 
the CSL's rotation matrix of the smallest-angle 
description. Thus, from the existence of the subgroup 
H1, the order of which is directly connected with the 
number of the different orientations that the sublattice 
A~ can have, a low-symmetry HI group implies more 
possibilities for the formation of the corresponding 
CSL. From the existence of the symmetry elements 
of the second type, the smallest-angle rotation matrix 
can be a symmetry element but only of the fourth or 
sixth order. From the third type of elements a connec- 
tion between CSLs of different ,~ values can exist. 
Since the analytical form of this smallest-angle rota- 
tion matrix can be deduced for every crystallographic 
system, the procedure described here is of general 
use. Thus a new classification of the different CSLs 
is possible according to their symmetry group. This 
allows the study of the CSL model from the symmetry 
point of view. 

1. Introduction 

In this paper we present results of a study of the CSL 
model, which is based on the theory established by 
Bleris & Delavignette (1981). According to this theory 
a rotation matrix, which produces the CSL describing 
a bicrystal, can be expressed as a function of the 
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integral numbers m, n, a and the rotation axis [uvw]. 
The algorithms for the calculation of these values 
have been recently given (Bleris, Karakostas & 
Delavignette, 1983) for any CSL of the cubic and 
hexagonal systems. With a complete classification of 
all CSLs according to the rotation matrix of their 
smallest-angle description, the question to be 
answered was 'how can we use this rotation matrix 
in order to define the crystallographic elements of a 
given CSL, i.e. the crystal system of the CSL and its 
base?'. 

In this paper we shall give the group-theoretical 
information for the computation of the symmetry of 
a given CSL. The use of group theory for the study 
of the CSL was first introduced by Pond & Bollmann 
(1979), where the stability of a CSL boundary was 
examined by means of some selection rules based on 
the black and white symmetries. Later, Gratias & 
Portier (1982) presented an extension of Pond's idea. 
Neither of these works deals with the CSL symmetry. 
Thus, the only existing information for comparison 
with our results is the Bravais classes of the cubic 
CSLs, which have been determined by a method 
described by Mighell, Santoro & Donnay in Inter- 
national Tables for X-ray Crystallography (1969), 
and have been given for the CSLs up to ,~ = 49 by 
Grimmer, Bollmann & Warrington (1974). 

In the following paper (Bleris, Doni, Karakostas, 
Antonopoulos & Delavignette, 1985) we shall present 
the necessary analytical expressions for the CSL's 
base computation, using some of the results of the 
present work. 

© 1985 International Union of Crystallography 
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2. Basic definitions 

Two lattices A~ and A2, related by the equation 

A2 = RA1, (1) 

where R is a rotation matrix, form a CSL A~2 if 

A12 = A1 n RA1 (2) 

is not the empty set. 
In the following the CSL, which is the common 

sublattice of the two lattices, will be considered as 
part of one of the two lattices only, which will be 
called 'the parent lattice'. Let us now suppose that g 
is a symmetry operator of this sublattice. If we apply 
this operator to the parent lattice, the following 
possibilities only can exist: 

(i) the sublattice and the parent lattice remain 
invariant; 

(ii) the sublattice remains invariant but not the 
parent lattice; 

(iii) a sublattice with a smaller ,~ value, which 
contains all the points of the first (higher ~ value) 
sublattice, remains invariant, but not the parent 
lattice. 

The above cases lead to the following obvious 
properties. Firstly, if we take into account the fact 
that every symmetry element may be a pure rotation 
or a combination of a rotation and the inversion 
operator I, we can say that, in the case of simple 
lattices, it is sufficient to deal with pure rotations only. 
Secondly, the axis of the g operator should be a vector 
of the sublattice and its angle can only have one of 
the allowable values 2¢r/2, 2¢r/3, 2¢r/4 or 2w/6. 
Furthermore, in case (i), g is a symmetry element of 
the parent lattice as well. In case (ii), the new orienta- 
tion of the parent lattice and the old one have a 
common sublattice and also g is a CSL rotation, 
having a rotation angle equal to one of the previously 
mentioned values. In case (iii), g should be a CSL 
rotation of the higher ,~ value sublattice and also a 
symmetry element of that with the smaller ~ value. 
Moreover, in this case the unit volume of the former 
sublattice is a multiple of the unit volume of the latter 
sublattice. Since the smaller ~ value sublattice has a 
unit volume that is a multiple of the unit volume of 
the parent lattice, we can conclude that the one with 
the higher ~ value has a unit volume that is a com- 
posite multiple of the unit volume of the parent lattice. 

Let us now examine (2). This relation implies that 
the existence of a CSL is equivalent to the existence 
of two sublattices A~ and A 2 of AI such that 

g a ~ = a ~ .  (3) 

The previous argument becomes clear in a typical 
example taken from the cubic system. The CSL 2 = 5, 
which is produced by a 36.87 ° rotation around the 
[001] axis, is shown in Fig. 1. The meaning of the 
rotation matrix R becomes clear from this figure. This 

matrix, expressing a rotation of 0 ° around the [uvw] 
axis, when it is applied to the parent lattice A1, brings 
the sublattice A ~ into coincidence with the sublattice 
A 2, forming a CSL according to (3). 

The sublattices A~, A 2 have exactly the same 
geometry and also the same symmetry. Let Ga |  be 
the symmetry group of A~ and GA~ the symmetry 
group of A 2. These two groups are connected by the 
similarity transformation: 

GA~ = RGAIR -1. (4) 

Relation (4) expresses the one-to-one correspondence 
between the elements of these two groups; therefore, 
it suffices for our purpose to find the group GAI only. 
Then the symmetry group GA~, i.e. the CSL's sym- 
metry, is immediately obtained by the similarity trans- 
formation (4). 

In the following sections we shall determine the 
symmetry elements of the three types classified above. 
Moreover, since we are dealing with matrices and 
their numerical properties, we choose a constant base, 
that of A~, for their representation. 

3. The elements of the first type (the subgroup/-/1) 

Let G be the symmetry group of the parent lattice 
A1 and/-/1 the set of the elements of G defined by 
the relation: 

Hl={g,=R-XgjR: gja2=A2, g,,gjsG}. (5) 

A 

( 

( 

[ooq 

/ 
/ ,  
/ 

/ 

® 

( 

/[,,o] 

 2,oj 

Fig. 1. [001] section of a cubic lattice. Dots: sublattice A~. Open 
circles: sublattice AT. Coincidence rotation around [001] by 
36.87 °. Rotation of 90 ° around [001] leaves A~, A2t invariant, 
rotation of 180 ° around [ 110] brings dots A I to open circles AT, 
rotation of 180 ° around [210] leaves AI invariant, but not the 
parent lattice. Miller indices are referred to the indices of the 
lattice A1. 
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In fact,/-/1 is a subgroup of GA~ because 

V g i ~ H t ~ g i A ] = R - l g j R A ~ = R - 1 A 2 = A ~  (6) 

and also H1 is a subgroup of G. 
It is well known that every group can be analysed 

as a coset sum of one of its subgroups (see for instance 
Bradley & Cracknell, .  1972; Van Tendeloo & 
Amelinckx, 1974). By using this property, G can be 
written as a coset sum of H~: 

G = glH1 + g2H1 +" • • + goHl, (7) 

where gi (i = 1, 2, 3 , . . . ,  v) does not belong to H1 and 
gl = E is the identity operator. The integer v, named 
the index of H1 in G, is the ratio of the orders [ G] 
and [H1] of the groups G and H~, respectively. 

All of the cosets in (7) correspond to a variant, i.e. 
to a different orientation of the sublattice A~ within 
lattice A1, produced by the application on A~ of one 
of the gi elements that do not belong to H1. There 
are v possible variants of A~, the integer v being 
dependent on the order of H~. The smaller the order 
of H~ the larger the number of variants. As an example 
of the relation between the symmetry elements of the 
parent lattice A~ and the variants of A] let us again 
consider the previously examined case of 2 = 5, in 
Fig. 1. If we consider a 90 ° rotation around the [001] 
axis, which is a symmetry element of A~, it can be 
easily seen that this is also a symmetry element of 
A ~, that is this rotation is a symmetry element of H~. 
On the contrary, if we consider a 180 ° rotation around 
the [110] axis, which is also a symmetry element of 
A1, when this rotation is applied on A~ it produces 
A 2, so that this rotation is one of the gi ~ H~ elements. 

Similarly, GAI can be analysed as 

GA~ = hlH1 + h2H1 + . . .  + htH1, 
(8) 

hj~ H, ( j =  1, 2 , . . . ,  t), 

where the hj ~ H~ elements are not symmetry elements 
of G. Since hj are symmetry elements of GA~, they 
are of the second or third kind, according to our 
classification in § 2. An example of the second kind 
of operations is a 180 ° rotation around the [210] axis 
in the previously examined case of 2 = 5 (Fig. 1), 
which leaves A ~ invariant while it changes the orienta- 
tion of A1. 

4. The elements of the second type (hi ~//1) 

As was pointed out before, the elements of the 
second type are CSL rotations. This means that hi 
corresponds to one of the symmetrically equiva- 
lent descriptions of the same CSL discussed by 
Karakostas, Bleris & Antonopoulos (1979). By its 
definition every symmetrically equivalent description 
is a rotation connecting a variant of A~ with A 2. Thus 
the general expression of the rotation matrix describ- 

ing a CSL and operating on A~ is 

Ri - gZ, l R. (9) 

Let us consider the set of the elements hi for which 
it holds that 

hi = gC, l R ~- G AI (10) 

and g~-l~ E, the identity operator. Since hi is an 
element of GA~ and a CSL rotation as well, for a 
convenient t, it follows that 

GA] ~ hi -~ = g~-~R. (11) 

Let us now consider an element h ~ GA] to be 
constant. Then, for every other hie  GA~, we have 
either 

hC, lh = R - l g i g - l R  = g k l R  ~ GA~, (12a) 

for a convenient k, or 

hClh = R - l g i g - l R  = g-~l ~. GA~, (12b) 

for a convenient t. Relation (12a) leads to R ~ G, 
which is impossible. On the other hand, from (12b) 
one can see that 

h~. l h ~. H1. (13) 

Moreover, from (12b) it is obvious that 

V hi c: GA~ -~ 7tgt E H 1 • hg, = hi (14) 

and this means that all the symmetry elements hi of 
(14) belong to the left coset hil l .  Since (12b) is unique 
for the existence of hi, we can conclude that 

H1 + hi l l  c G AI (15) 

and if there are no elements of the third type in GA~ 
we have 

H1 + hi l l  = GAl. (16) 

From (16) it is obvious that [GAI]/[H1] = 2, which 
means that H~ is an invariant subgroup of GA~ (see 
Bradley & Cracknell, 1972). The previous statement 
immediately implies that hH~ = HI h and therefore 

(hH1)(hH~)= h ( H ~ h ) n ~ -  hEn~-- H~, (17) 

which means that h 2= E and so h is a 180 ° rotation. 
Let us examine the order p that h may have in (15). 

Supposing that p > 2, we have 

E = h. h. h . . .  h = g - l R g - l R . . ,  g - l R ,  
• ,s (18) 

where E is the identity operator. From (11) we have 

R g - ' R = g , .  (19) 

By substituting (19) into (18) p - 1  times, we have 

E = g - l R g - l g t . . ,  g-lgt.  (20) 

This relation cannot be true, since R ~ G. Thus, if R 
is the smallest-angle rotation matrix of a given CSL, 
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then 

GA[ ~ h = g-XR, if and only if h E -- E. 

Finally, there remains the case 

h i = g71R and gT1 = E. (21) 

In this case (11) is still valid and therefore 

h71 = R -1 = g/1R (22) 

for an appropriate g, e G. From this relation we have 

R2=g ,  (23) 

and, since R ~ GA[, the element R 2 belongs t o  GA[ 
and gt e HI. Thus, the smallest-angle rotation matrix 
R can be a symmetry element if its square is an 
element of HI. 

In the case where R is an element of Gab we also 
form the product 

h71R = R - l g i  R, V hi ~ GA~ 

and (24) 

hi # R, hi # R -1. 

From (24), following the procedure used for (12), it 
can be easily proved that 

h71R = R-lg,R = g~l E H~. (25) 

Relation (25) can be rewritten as 

hT, 1R = hiR = gTn 1 = g71RR = g71R 2 = g71&. (26) 

But g, e H1, so it is obvious that g7 ~ e HI. Moreover, 
(25) implies that 

V hi E GA~ "+ 3 gm ~ H i :  hi -" Rgm ~ RH1,  

which means that all the symmetry elements hi belong 
to the left coset RH~ of H~ in G,q. From (25) it is 
also obvious that 

V hi ~ GA~ ~ 21 gk ~ 1"11: R = hig k E hiH~, (27) 

which means that R is among the elements of hill1. 
The same is true for R -1. This can be possible only 
if /-/1 contains a number of elements equal to the 
number of 180 ° rotations that it has plus two. So, 
when R e  Gab H i  contains two more elements, 
besides the gt element, which are given by (23). 

As we have mentioned before, R, being a symmetry 
element, can be a rotation of the third, fourth or sixth 
order. If R is of the third order, then necessarily 
R 3 = E and because of (23) we have R = g71. This is 
impossible and we may conclude that R can only be 
of the fourth or sixth order. 

5. The elements of the third type 

As has been pointed out above (§ 2), this case can 
only exist if ~ is a composite integer. Let us now 
suppose that 27 = pq, where p, q are prime integers. 
Then, a symmetry element of the third type for the 

CSL with volume 2; can be found from the symmetry 
elements of the CSLs with volume either ~ = p  or 
,~=q.  

For the symmetry element R e (or Rq) to be a 
symmetry element of the CSL with volume 2;, in both 
cases the following conditions are necessary: 

(i) R e is not a symmetry element of G. Then R e is 
either a 180 ° rotation or one of the exceptional cases 
of 90 or 60 ° rotations. 

(ii) The axis r of R e is a vector of the CSL. This 
condition can be easily checked by taking the trans- 
formation R~r ,  where Rx is the smallest-angle rota- 
tion matrix of the CSL with volume Z. 

(iii) The product R~.IRpRx gives a rotation matrix 
that describes a CSL with volume p. 

If such an element exists, then the symmetry group 
G31 of this composite CSL can be obtained by joining 
this element to the group of the elements that have 
been found by the steps of §§ 3 and 4. 

6. Practical procedure for the construction of GA~ 
In this section we shall develop the practical pro- 
cedure for the construction of GAb taking into 
account the previously established properties of the 
symmetry group GAi. 

Let G be the symmetry group of the parent lattice. 
Since we are dealing with simple lattices, G has the 
form 

G = Go + IGo, (28) 

where I is the inversion operator and Go is a subgroup 
of G containing only pure rotations. As we have 
mentioned before, we shall use the subgroup Go. For 
the cubic system Go is the O (432) group containing 
24 elements (Karakostas et al., 1979), and for the 
hexagonal system Go is the D6 (622) group containing 
12 elements (Hag~ge, Nouet & Delavignette, 1980). 

Let R be the rotation matrix that gives a CSL with 
multiplicity ~ when it operates on A1. We compute 
the products 

(a) R- lgR  I 
(b) g - lR  J V g~ Go. (29) 

Relation (29a) gives the subgroup /-/1 while (29b) 
gives the set of the different descriptions of the same 
CSL. 

We can easily see that the order of 1-11, i.e. the 
number of the symmetry elements R- lgR,  can never 
be equal to the order of Go. (Otherwise all the ele- 
ments of Go would be symmetry elements of A~ and 
there would be no variants of A~, so that all the g-~R 
rotations would describe one and the same 
geometrical operation.) On the other hand, the num- 
ber of 180 ° rotations from the set of the g-IR elements 
should be smaller or equal to one half of the order 
of Go. This happens because, as we have seen before, 



444 GROUP-THEORETICAL CONSIDERATION OF THE CSL SYMMETRY 

Table 1. Possible CSL symmetry according to the 
number of 180 ° rotations 

Number 
of 180 ° 

rotations .~ prime 2 composite 
None Triclinic Triclinic or higher 

1 Monoclinic Monoclinic or higher 
2 Orthorhombic Orthorhombie or higher 
3 Rhombohedral Rhombohedral or higher 
4 Tetragonal Tetragonal 
5 Impossible, because there are no subgroups of order 5 
6 Hexagonal Hexagonal or cubic 

Cubic system" ,~ = 15, [uvw] = [210], 0 =48.18 °. 
In this CSL the application of (29) gives the sub- 

group HI, which contains only the identity operator 
and one element of the 180 ° type. This element corre- 
sponds to a 180 ° rotation around the [125] axis and 
it is in a matrix form: 

1 2 1-T 10 . 
h=i5-  5 10 10 

if there exists a set of 180 ° rotations, then the number 
of the elements of this set is equal to the number of 
the elements of hill. This number is equal to the 
number of the elements of hH~ minus 2 in the special 
cases where R is an element of GAl. Taking into 
account that in all cases the symmetry elements of 
GA~ that do not belong to G are included in the 
products hH~, we can write 

[ H~ + hH~] -< [ Go] (30) 

and 

[HI + hHI]= 2[H~]<-[Go]~[H~]<-[Go]/2. (31) 

The possibilities existing for the symmetry of the 
sublattice A~ are shown in the following diagram, 
holding for both cubic and hexagonal systems. 

Cubic 0(432) Hexagonal /96(622 ) 

Rhombohedral  D3(32) : [D3] = 6 

Tetragonal ~D4(422) : [/:)4] = 8 

Orthorhombic D2(22-~ • [D2] = 4 (32) 
Monoclinic (?2(2) : [ C2] = 2 

Tdclinic CI-(T) : [ Ct ] = 1. 

Taking this diagram into account, we have classified 
all the possibilities as a function of the existing 180 ° 
rotations in Table 1. 

In all the above cases one must also take into 
account the possibility of R being a symmetry element 
of the CSL. In this case the symmetry of the CSL 
does not follow the rules of Table 1, but it is character- 
ized by the order of R. 

In what follows, we shall treat two typical examples 
of constructing GAI, one of a composite Z-value CSL 
and the case Z = 2 CSL of the hexagonal system. 
Moreover, tables have been constructed for CSLs up 
to ,~ = 49 for both cubic and hexagonal (/z = v = 1; 
/z = 5, v = 2 ; /z  = 8, v = 3) systems. These tables pre- 
sent the step by step procedure for the computation 
of GA~ of every CSL.* 

* Supplementary material giving the results of  the application 
of  the theory has been deposited with the British Library Lending 
Division as Supplementary Publication No. SUP 42161 (15pp.). 
Copies may be obtained through The Executive Secretary, Inter- 
national Union of  Crystallography, 5 Abbey Square, Chester 
CH1 2HU, England. 

So the subgroup H1 + hH~ is 

H1 + hH~ = {E}+ h{E}= {E, h}. 

Since the volume of this CSL is a composite number, 
we have to look for symmetry elements of the third 
type before the final classification. But the CSL rota- 
tion around the [210] axis of 1; = 15 corresponds to 
a symmetry element of 180 °, because a symmetrical 
equivalent of this axis is among the equivalent 
descriptions of ,~ = 5, corresponding to a 180 ° sym- 
metry element. So, the 180 ° rotation around the [210] 
axis of ,~ = 5 is a symmetry element of the third type 
of ,~ = 15 and GAI is constructed by joining this 
element, given in a matrix representation with the 
form 

ff , 
R5 =~- 0 

tO the subgroup H~ + hH~ according to the following 
relation: 

GAI={E,h}+R5{E,h}. 

The element Rsh is in a matrix form: 

= 1 = R 3 Rsh hR5 =~ 2 

and corresponds to a 180 ° rotation around the [121] 
axis of I; = 3, which is also a symmetry element of 
the third type of 1; = 15. It can be easily checked that 
the [121] axis is an axis of the CSL 1; = 15. 

So, GAI containing the identity operator E and 
three other elements corresponding to 180 ° rotations 
is isomorphic to the D2 orthorhombic symmetry 
group. 

Hexagonal system: 2 = 2, [uvw] = [210], 0 = 90 ° (/z = 
v = l ) .  

By using (29) we obtain 

H, = {E, Cu, C~2, C~=} 

and two rotations of 180 ° . Taking into account that 
R is of the fourth order, we have a typical example 
of the case discussed in § 4. The different powers of 
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R have the following matrix form: 

1[¢~ 0 ! ]  [ 1  O i l  0 , R 2= 1 1" , 
R=2- 2 0 0 

° 2] 0 , R 4 = E .  R 3 =~ 

R 2 is the C~2 ~ Ha element and we may construct Gal 
by making use of the C2 ~ Ha element. Therefore, 

G al = { R, R 2, R 3, R 4} + C2{ R, R 2, R 3, R 4} 

= { E, C~2, C~2, C2, R, R -a, C2R, C2R 3} 

and Gal is isomorphic to the D4 tetragonal symmetry 
group. 

This work was partially supported by the Greek 
Ministry of Research and Technology. 
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Abstract 

A combination of analytical expressions and a know- 
ledge of symmetry is employed for the displacement 
shift complete lattice (DSCL) base computation. The 
method is of general use and its application to cubic 
and hexagonal systems is given. Tables containing all 
the symmetrically equivalent descriptions of one and 
the same coincidence site lattice (CSL) as a function 
of one description are given for both cubic and 
hexagonal systems. 

1. Introduction 

Since the grain boundary (GB) cannot be described 
only on the basis of absolutely exact coincidence site 
lattice (CSL) orientations, the study of equilibrium 

grain boundaries in the vicinity of a CSL condition 
is a real necessity and a completion to a full CSL 
study. It has been experimentally shown that the 
deviation of a few degrees from the exact CSL condi- 
tion is usually accommodated by a dislocation array. 
The Burgers vectors of such a dislocation array are 
related with the approximate CSL if they are members 
of the corresponding displacement shift complete 
lattice (DSCL) (Bollmann, 1970). 

According to the reciprocity theorem, which has 
been established by H. Grimmer, there is a one-to-one 
correspondence between the CSL and the DSCL, and 
the DSCL base can be found if the CSL base is known 
(Grimmer, 1974). An application of this elegant state- 
ment, which is of general character, was given for the 
DSCL of the cubic system for CSLs up to X = 49 by 
Grimmer, Bollmann & Warrington (1974). Unfortu- 
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